Coordinating feedback and switching for control of spatially distributed processes
نویسندگان
چکیده
This work proposes a methodology for coordinating feedback controller synthesis and actuator configuration switching in control of spatially-distributed processes, described by highly dissipative partial differential equations (PDEs) with actuator constraints. Under the assumption that the eigenspectrum of the spatial differential operator can be partitioned into a finite slow set and an infinite stable fast complement, Galerkin’s method is initially used to derive a finite-dimensional system (set of ordinary differential equations (ODEs) in time) that captures the dominant dynamics of the PDE system. Using this ODE system, a stabilizing nonlinear feedback controller is designed, for a given actuator configuration, and an explicit characterization of the corresponding stability region is obtained in terms of the size of actuator constraints and the spatial locations of the actuators. Switching laws are then derived, on the basis of the stability regions, to orchestrate the transition between multiple, spatially-distributed control actuator configurations, in a way that respects actuator constraints, accommodates multiple (possibly conflicting) control objectives and guarantees closed-loop stability. Precise conditions that guarantee stability of the constrained closed-loop PDE system under switching are provided, and the proposed approach is successfully applied to the problem of constrained, fault-tolerant stabilization of unstable steady-states of a representative diffusion-reaction process and a non-isothermal tubular reactor with recycle. # 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Fault-tolerant control of fluid dynamic systems via coordinated feedback and switching
This work addresses the problem of designing a fault-tolerant control system for fluid dynamic systems modeled by highlydissipative partial differential equations (PDEs) with constrained control actuators. The proposed approach is predicated upon the idea of coordinating feedback controller synthesis and switching between multiple, spatially-distributed control actuator configurations. Using ap...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملA new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem
Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...
متن کاملA Distributed Control Architecture for Autonomous Operation of a Hybrid AC/DC Microgrid System
Hybrid AC/DC microgrids facilitate the procedure of DC power connection into the conventional AC power system by developing the distributed generations (DGs) technologies. The conversion processes between AC and DC electrical powers are more convenient by hybrid systems. In this paper, an energy management system (EMS) for a hybrid microgrid network is proposed due to the optimal utilization of...
متن کاملCoordinating Feedback and Switching for Control of Hybrid Nonlinear Processes
A robust hybrid control strategy for a broad class of hybrid nonlinear processes with actuator constraints and uncertain dynamics is proposed. These ®ariable-structure processes comprise a finite family of constrained uncertain continuous nonlinear dynamical subsystems, together with discrete e®ents that trigger the transition between the continuous subsystems. The proposed control strategy is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 28 شماره
صفحات -
تاریخ انتشار 2004